129 research outputs found

    A Quasi-Wasserstein Loss for Learning Graph Neural Networks

    Full text link
    When learning graph neural networks (GNNs) in node-level prediction tasks, most existing loss functions are applied for each node independently, even if node embeddings and their labels are non-i.i.d. because of their graph structures. To eliminate such inconsistency, in this study we propose a novel Quasi-Wasserstein (QW) loss with the help of the optimal transport defined on graphs, leading to new learning and prediction paradigms of GNNs. In particular, we design a "Quasi-Wasserstein" distance between the observed multi-dimensional node labels and their estimations, optimizing the label transport defined on graph edges. The estimations are parameterized by a GNN in which the optimal label transport may determine the graph edge weights optionally. By reformulating the strict constraint of the label transport to a Bregman divergence-based regularizer, we obtain the proposed Quasi-Wasserstein loss associated with two efficient solvers learning the GNN together with optimal label transport. When predicting node labels, our model combines the output of the GNN with the residual component provided by the optimal label transport, leading to a new transductive prediction paradigm. Experiments show that the proposed QW loss applies to various GNNs and helps to improve their performance in node-level classification and regression tasks

    Regularized Optimal Transport Layers for Generalized Global Pooling Operations

    Full text link
    Global pooling is one of the most significant operations in many machine learning models and tasks, which works for information fusion and structured data (like sets and graphs) representation. However, without solid mathematical fundamentals, its practical implementations often depend on empirical mechanisms and thus lead to sub-optimal, even unsatisfactory performance. In this work, we develop a novel and generalized global pooling framework through the lens of optimal transport. The proposed framework is interpretable from the perspective of expectation-maximization. Essentially, it aims at learning an optimal transport across sample indices and feature dimensions, making the corresponding pooling operation maximize the conditional expectation of input data. We demonstrate that most existing pooling methods are equivalent to solving a regularized optimal transport (ROT) problem with different specializations, and more sophisticated pooling operations can be implemented by hierarchically solving multiple ROT problems. Making the parameters of the ROT problem learnable, we develop a family of regularized optimal transport pooling (ROTP) layers. We implement the ROTP layers as a new kind of deep implicit layer. Their model architectures correspond to different optimization algorithms. We test our ROTP layers in several representative set-level machine learning scenarios, including multi-instance learning (MIL), graph classification, graph set representation, and image classification. Experimental results show that applying our ROTP layers can reduce the difficulty of the design and selection of global pooling -- our ROTP layers may either imitate some existing global pooling methods or lead to some new pooling layers fitting data better. The code is available at \url{https://github.com/SDS-Lab/ROT-Pooling}

    Graph Self-Contrast Representation Learning

    Full text link
    Graph contrastive learning (GCL) has recently emerged as a promising approach for graph representation learning. Some existing methods adopt the 1-vs-K scheme to construct one positive and K negative samples for each graph, but it is difficult to set K. For those methods that do not use negative samples, it is often necessary to add additional strategies to avoid model collapse, which could only alleviate the problem to some extent. All these drawbacks will undoubtedly have an adverse impact on the generalizability and efficiency of the model. In this paper, to address these issues, we propose a novel graph self-contrast framework GraphSC, which only uses one positive and one negative sample, and chooses triplet loss as the objective. Specifically, self-contrast has two implications. First, GraphSC generates both positive and negative views of a graph sample from the graph itself via graph augmentation functions of various intensities, and use them for self-contrast. Second, GraphSC uses Hilbert-Schmidt Independence Criterion (HSIC) to factorize the representations into multiple factors and proposes a masked self-contrast mechanism to better separate positive and negative samples. Further, Since the triplet loss only optimizes the relative distance between the anchor and its positive/negative samples, it is difficult to ensure the absolute distance between the anchor and positive sample. Therefore, we explicitly reduced the absolute distance between the anchor and positive sample to accelerate convergence. Finally, we conduct extensive experiments to evaluate the performance of GraphSC against 19 other state-of-the-art methods in both unsupervised and transfer learning settings.Comment: ICDM 2023(Regular

    Joint Port Selection Based Channel Acquisition for FDD Cell-Free Massive MIMO

    Full text link
    In frequency division duplexing (FDD) cell-free massive MIMO, the acquisition of the channel state information (CSI) is very challenging because of the large overhead required for the training and feedback of the downlink channels of multiple cooperating base stations (BSs). In this paper, for systems with partial uplink-downlink channel reciprocity, and a general spatial domain channel model with variations in the average port power and correlation among port coefficients, we propose a joint-port-selection-based CSI acquisition and feedback scheme for the downlink transmission with zero-forcing precoding. The scheme uses an eigenvalue-decomposition-based transformation to reduce the feedback overhead by exploring the port correlation. We derive the sum-rate of the system for any port selection. Based on the sum-rate result, we propose a low-complexity greedy-search-based joint port selection (GS-JPS) algorithm. Moreover, to adapt to fast time-varying scenarios, a supervised deep learning-enhanced joint port selection (DL-JPS) algorithm is proposed. Simulations verify the effectiveness of our proposed schemes and their advantage over existing port-selection channel acquisition schemes.Comment: 30 pages, 9 figures. The paper has been submitted to IEEE journal for possible publicatio

    Wirelessly-Controlled Untethered Piezoelectric Planar Soft Robot Capable of Bidirectional Crawling and Rotation

    Full text link
    Electrostatic actuators provide a promising approach to creating soft robotic sheets, due to their flexible form factor, modular integration, and fast response speed. However, their control requires kilo-Volt signals and understanding of complex dynamics resulting from force interactions by on-board and environmental effects. In this work, we demonstrate an untethered planar five-actuator piezoelectric robot powered by batteries and on-board high-voltage circuitry, and controlled through a wireless link. The scalable fabrication approach is based on bonding different functional layers on top of each other (steel foil substrate, actuators, flexible electronics). The robot exhibits a range of controllable motions, including bidirectional crawling (up to ~0.6 cm/s), turning, and in-place rotation (at ~1 degree/s). High-speed videos and control experiments show that the richness of the motion results from the interaction of an asymmetric mass distribution in the robot and the associated dependence of the dynamics on the driving frequency of the piezoelectrics. The robot's speed can reach 6 cm/s with specific payload distribution.Comment: Accepted to the 2023 IEEE International Conference on Robotics and Automation (ICRA

    DGI: Easy and Efficient Inference for GNNs

    Full text link
    While many systems have been developed to train Graph Neural Networks (GNNs), efficient model inference and evaluation remain to be addressed. For instance, using the widely adopted node-wise approach, model evaluation can account for up to 94% of the time in the end-to-end training process due to neighbor explosion, which means that a node accesses its multi-hop neighbors. On the other hand, layer-wise inference avoids the neighbor explosion problem by conducting inference layer by layer such that the nodes only need their one-hop neighbors in each layer. However, implementing layer-wise inference requires substantial engineering efforts because users need to manually decompose a GNN model into layers for computation and split workload into batches to fit into device memory. In this paper, we develop Deep Graph Inference (DGI) -- a system for easy and efficient GNN model inference, which automatically translates the training code of a GNN model for layer-wise execution. DGI is general for various GNN models and different kinds of inference requests, and supports out-of-core execution on large graphs that cannot fit in CPU memory. Experimental results show that DGI consistently outperforms layer-wise inference across different datasets and hardware settings, and the speedup can be over 1,000x.Comment: 10 pages, 10 figure

    Model-Based Control of Planar Piezoelectric Inchworm Soft Robot for Crawling in Constrained Environments

    Full text link
    Soft robots have drawn significant attention recently for their ability to achieve rich shapes when interacting with complex environments. However, their elasticity and flexibility compared to rigid robots also pose significant challenges for precise and robust shape control in real-time. Motivated by their potential to operate in highly-constrained environments, as in search-and-rescue operations, this work addresses these challenges of soft robots by developing a model-based full-shape controller, validated and demonstrated by experiments. A five-actuator planar soft robot was constructed with planar piezoelectric layers bonded to a steel foil substrate, enabling inchworm-like motion. The controller uses a soft-body continuous model for shape planning and control, given target shapes and/or environmental constraints, such as crawling under overhead barriers or "roof" safety lines. An approach to background model calibrations is developed to address deviations of actual robot shape due to material parameter variations and drift. Full experimental shape control and optimal movement under a roof safety line are demonstrated, where the robot maximizes its speed within the overhead constraint. The mean-squared error between the measured and target shapes improves from ~0.05 cm2^{2} without calibration to ~0.01 cm2^{2} with calibration. Simulation-based validation is also performed with various different roof shapes.Comment: Accepted to the 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft). Project website: https://piezorobotcontroller.github.io/ Summary video: https://youtu.be/Md-Uo-pUaI

    eViper: A Scalable Platform for Untethered Modular Soft Robots

    Full text link
    Soft robots present unique capabilities, but have been limited by the lack of scalable technologies for construction and the complexity of algorithms for efficient control and motion, which depend on soft-body dynamics, high-dimensional actuation patterns, and external/on-board forces. This paper presents scalable methods and platforms to study the impact of weight distribution and actuation patterns on fully untethered modular soft robots. An extendable Vibrating Intelligent Piezo-Electric Robot (eViper), together with an open-source Simulation Framework for Electroactive Robotic Sheet (SFERS) implemented in PyBullet, was developed as a platform to study the sophisticated weight-locomotion interaction. By integrating the power electronics, sensors, actuators, and batteries on-board, the eViper platform enables rapid design iteration and evaluation of different weight distribution and control strategies for the actuator arrays, supporting both physics-based modeling and data-driven modeling via on-board automatic data-acquisition capabilities. We show that SFERS can provide useful guidelines for optimizing the weight distribution and actuation patterns of the eViper to achieve the maximum speed or minimum cost-of-transportation (COT).Comment: 8 pages, 21 figures, accepted by IROS 202

    Temperature controlled microcapsule loaded with Perilla essential oil and its application in preservation of peaches

    Get PDF
    In this study, Perilla frutescens essential oil (PEO) loaded microcapsules (PEOM) were successfully prepared and their thermal stability, temperature-responsive releasing effect, antioxidant activity, antibacterial activity, and preservation of peach were systematically investigated. PEOM showed excellent encapsulation efficiency (91.5%) with a core-shell ratio of 1.4:1 and exhibited high thermal stability, indicating that PEOM could effectively maintain PEO release rate. In vitro assays indicated that the optimal kinetic model for PEO release fitted well with first order with a diffusion mechanism. A high level of antioxidant and antibacterial activity of PEOM was maintained. In addition, owing to its sustained release, PEOM could prolong the shelf life of peaches significantly. Therefore, PEOM has potential application and development prospects in the field of food preservation
    corecore